Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2000
Data sources: Lirias
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modifications in Lignin and Accumulation of Phenolic Glucosides in Poplar Xylem upon Down-regulation of Caffeoyl-Coenzyme A O-Methyltransferase, an Enzyme Involved in Lignin Biosynthesis

Authors: Meyermans, H.; Morreel, K.; Lapierre, C.; Pollet, B.; De Bruyn, André; Busson, Roger; Herdewijn, Piet; +9 Authors

Modifications in Lignin and Accumulation of Phenolic Glucosides in Poplar Xylem upon Down-regulation of Caffeoyl-Coenzyme A O-Methyltransferase, an Enzyme Involved in Lignin Biosynthesis

Abstract

Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) methylates, in vitro, caffeoyl-CoA and 5-hydroxyferuloyl-CoA, two possible precursors in monolignol biosynthesis in vivo. To clarify the in vivo role of CCoAOMT in lignin biosynthesis, transgenic poplars with 10% residual CCoAOMT protein levels in the stem xylem were generated. Upon analysis of the xylem, the affected transgenic lines had a 12% reduced Klason lignin content, an 11% increased syringyl/guaiacyl ratio in the noncondensed lignin fraction, and an increase in lignin-attached p-hydroxybenzoate but otherwise a lignin composition similar to that of wild type. Stem xylem of the CCoAOMT-down-regulated lines had a pink-red coloration, which coincided with an enhanced fluorescence of mature vessel cell walls. The reduced production of CCoAOMT caused an accumulation of O(3)-beta-d-glucopyranosyl-caffeic acid, O(4)-beta-d-glucopyranosyl-vanillic acid, and O(4)-beta-d-glucopyranosyl-sinapic acid (GSA), as authenticated by (1)H NMR. Feeding experiments showed that O(3)-beta-d-glucopyranosyl-caffeic acid and GSA are storage or detoxification products of caffeic and sinapic acid, respectively. The observation that down-regulation of CCoAOMT decreases lignin amount whereas GSA accumulates to 10% of soluble phenolics indicates that endogenously produced sinapic acid is not a major precursor in syringyl lignin biosynthesis. Our in vivo results support the recently obtained in vitro enzymatic data that suggest that the route from caffeic acid to sinapic acid is not used for lignin biosynthesis.

Keywords

EXPRESSION, Biochemistry & Molecular Biology, Magnetic Resonance Spectroscopy, Coumaric Acids, Down-Regulation, PHENYLPROPANOID METABOLISM, SUBSTRATE SPECIFICITIES, Lignin, Mass Spectrometry, Caffeic Acids, TRANSGENIC POPLARS, Glucosides, Phenols, VANILLA-PLANIFOLIA ANDR, Carbohydrate Conformation, 11 Medical and Health Sciences, Chromatography, High Pressure Liquid, Plant Proteins, Vanillic Acid, SYRINGYL, Science & Technology, 31 Biological sciences, METHYLATION, 32 Biomedical and clinical sciences, Methyltransferases, 06 Biological Sciences, Plants, Genetically Modified, 34 Chemical sciences, SUSPENSION-CULTURES, MAIZE LIGNIN, Models, Chemical, ACID, Acyl Coenzyme A, 03 Chemical Sciences, Life Sciences & Biomedicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    222
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
222
Top 1%
Top 1%
Top 10%
Green
gold