
We present a Generalized Deformable Spatial Pyramid (GDSP) matching algorithm for calculating the dense correspondence between a pair of images with large appearance variations. The main challenges of the problem generally originate in appearance dissimilarities and geometric variations between images. To address these challenges, we improve the existing Deformable Spatial Pyramid (DSP) [10] model by generalizing the search space and devising the spatial smoothness. The former is leveraged by rotations and scales, and the latter simultaneously considers dependencies between high-dimensional labels through the pyramid structure. Our spatial regularization in the high-dimensional space enables our model to effectively preserve the meaningful geometry of objects in the input images while allowing for a wide range of geometry variations such as perspective transform and non-rigid deformation. The experimental results on public datasets and challenging scenarios show that our method outperforms the state-of-the-art methods both qualitatively and quantitatively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
