Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Data Science Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Science Journal
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Science Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Science Journal
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Data Science Journal
Article . 2019
License: CC BY
https://dx.doi.org/10.60692/jc...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/c0...
Other literature type . 2019
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

“Data Stewardship Wizard”: A Tool Bringing Together Researchers, Data Stewards, and Data Experts around Data Management Planning

"معالج الإشراف على البيانات ": أداة تجمع الباحثين ومشرفي البيانات وخبراء البيانات حول تخطيط إدارة البيانات
Authors: Robert Pergl; Rob Hooft; Marek Suchánek; Vojtěch Knaisl; Jan Slifka;

“Data Stewardship Wizard”: A Tool Bringing Together Researchers, Data Stewards, and Data Experts around Data Management Planning

Abstract

L'assistant de gestion des données est un outil de planification de la gestion des données qui vise à tirer le meilleur parti de la planification de la gestion des données pour le projet lui-même plutôt que de remplir ses obligations. Il est basé sur une gestion ÉQUITABLE des données, dans laquelle chaque décision liée aux données dans un projet agit pour optimiser la trouvabilité, l'accessibilité, l'interopérabilité et/ou la réutilisation des données. L'arrière-plan de cette philosophie est que le premier réutilisateur des données est le chercheur lui-même. L'outil encourage la consultation d'experts et d'experts, peut aider les chercheurs à éviter les risques qu'ils ne savaient pas qu'ils rencontreraient en les confrontant à l'expérience pratique des autres, et peut les aider à découvrir des technologies utiles dont ils ignoraient l'existence. Dans cet article, nous discutons du contexte et de la motivation de l'outil, nous expliquons son architecture et nous présentons les fonctions clés, telles que l'évolutivité et les migrations du modèle de connaissances, l'assemblage des plans de gestion des données, les métriques et l'évaluation des plans de gestion des données.

El Asistente de administración de datos es una herramienta para la planificación de la gestión de datos que se centra en obtener el máximo valor de la planificación de la gestión de datos para el proyecto en sí, en lugar de cumplir con las obligaciones. Se basa en la administración JUSTA de datos, en la que cada decisión relacionada con los datos en un proyecto actúa para optimizar la capacidad de búsqueda, accesibilidad, interoperabilidad y/o reutilización de los datos. El trasfondo de esta filosofía es que el primer reutilizador de los datos es el propio investigador. La herramienta fomenta la consulta de expertos y expertos, puede ayudar a los investigadores a evitar riesgos que no sabían que encontrarían al confrontarlos con la experiencia práctica de otros y puede ayudarlos a descubrir tecnologías útiles que no sabían que existían. En este artículo, discutimos el contexto y la motivación de la herramienta, explicamos su arquitectura y presentamos funciones clave, como la evolutividad y las migraciones del modelo de conocimiento, el ensamblaje de planes de gestión de datos, las métricas y la evaluación de los planes de gestión de datos.

The Data Stewardship Wizard is a tool for data management planning that is focused on getting the most value out of data management planning for the project itself rather than on fulfilling obligations. It is based on FAIR Data Stewardship, in which each data-related decision in a project acts to optimize the Findability, Accessibility, Interoperability and/or Reusability of the data. The background to this philosophy is that the first reuser of the data is the researcher themselves. The tool encourages the consulting of expertise and experts, can help researchers avoid risks they did not know they would encounter by confronting them with practical experience from others, and can help them discover helpful technologies they did not know existed. In this paper, we discuss the context and motivation for the tool, we explain its architecture and we present key functions, such as the knowledge model evolvability and migrations, assembling data management plans, metrics and evaluation of data management plans.

معالج الإشراف على البيانات هو أداة لتخطيط إدارة البيانات تركز على الحصول على أكبر قيمة من تخطيط إدارة البيانات للمشروع نفسه بدلاً من الوفاء بالالتزامات. يعتمد على الإشراف العادل على البيانات، حيث يعمل كل قرار متعلق بالبيانات في المشروع على تحسين إمكانية العثور على البيانات وإمكانية الوصول إليها وقابلية التشغيل البيني و/أو إعادة استخدامها. خلفية هذه الفلسفة هي أن أول من أعاد استخدام البيانات هو الباحث نفسه. وتشجع الأداة على استشارة الخبرات والخبراء، ويمكن أن تساعد الباحثين على تجنب المخاطر التي لم يعرفوا أنهم سيواجهونها من خلال مواجهتهم بتجربة عملية من الآخرين، ويمكن أن تساعدهم على اكتشاف التقنيات المفيدة التي لم يعرفوا أنها موجودة. في هذه الورقة، نناقش سياق الأداة ودوافعها، ونشرح بنيتها ونقدم وظائفها الرئيسية، مثل تطوير نموذج المعرفة وعمليات الترحيل، وتجميع خطط إدارة البيانات، والمقاييس وتقييم خطط إدارة البيانات.

Keywords

FOS: Computer and information sciences, Data Quality Assessment and Improvement, Data Sharing, Science (General), Information Systems and Management, Scientific Workflows, Knowledge management, FOS: Political science, Social Sciences, Data Stewardship, FOS: Law, Management Science and Operations Research, Data management, data management plan, Decision Sciences, Data science, Data Sharing and Stewardship in Science, Database, Q1-390, Context (archaeology), data stewardship, Data Management Plan, Wizard, Political science, Biology, FAIR, Management and Reproducibility of Scientific Workflows, Politics, Paleontology, fair, Interoperability, Scientific Data Management, Computer science, World Wide Web, Computer Science, Physical Sciences, Master data, Data Reuse, Stewardship (theology), Law, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
gold