Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interface Energetics and Charge Carrier Density Amplification by Sn-Doping in LaAlO3/SrTiO3 Heterostructure

Authors: Safdar, Nazir; Jianli, Cheng; Maziar, Behtash; Jian, Luo; Kesong, Yang;

Interface Energetics and Charge Carrier Density Amplification by Sn-Doping in LaAlO3/SrTiO3 Heterostructure

Abstract

Tailoring the two-dimensional electron gas (2DEG) at the n-type (TiO2)(0)/(LaO)(+1) interface between the polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) insulators can potentially provide desired functionalities for next-generation low-dimensional nanoelectronic devices. Here, we propose a new approach to tune the electronic and magnetic properties in the n-type LAO/STO heterostructure (HS) system via electron doping. In this work, we modeled four types of layer doped LAO/STO HS systems with Sn dopants at different cation sites and studied their electronic structures and interface energetics by using first-principles electronic structure calculations. We identified the thermodynamic stability conditions for each of the four proposed doped configurations with respect to the undoped LAO/STO interface. We further found that the Sn-doped LAO/STO HS system with Sn at Al site (Sn@Al) is energetically most favorable with respect to decohesion, thereby strengthening the interface, while the doped HS system with Sn at La site (Sn@La) exhibits the lowest interfacial cohesion. Moreover, our results indicate that all the Sn-doped LAO/STO HS systems exhibit the n-type conductivity with the typical 2DEG characteristics except the Sn@La doped HS system, which shows p-type conductivity. In the Sn@Al doped HS model, the Sn dopant exists as a Sn(4+) ion and introduces one additional electron into the HS system, leading to a higher charge carrier density and larger magnetic moment than that of all the other doped HS systems. An enhanced charge confinement of the 2DEG along the c-axis is also found in the Sn@Al doped HS system. We hence suggest that Sn@Al doping can be an effective way to enhance the electrical conduction and magnetic moment of the 2DEG in LAO/STO HS systems in an energetically favorable manner.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!