Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Matrix Metalloproteinase-2 Contributes to Cancer Cell Migration on Collagen

Authors: Xiaoping, Xu; Yao, Wang; Zhihua, Chen; Mark D, Sternlicht; Manuel, Hidalgo; Bjorn, Steffensen;

Matrix Metalloproteinase-2 Contributes to Cancer Cell Migration on Collagen

Abstract

Abstract Matrix metalloproteinases (MMP) are central to tissue penetration by cancer cells, as tumors expand and form metastases, but the mechanism by which MMP-2 contributes to cancer cell migration is not well understood. In the present experiments, both a broad-spectrum MMP inhibitor and the isolated collagen binding domain (CBD) from MMP-2 inhibited cell migration on native type I collagen. These results verified the involvement of MMPs in general and showed that MMP-2, specifically, contributes to cell migration by a mechanism involving MMP-2 interaction with collagen. To exclude potential overlapping effects of MMP-9, additional experiments showed that MMP-2 also contributed to migration of MMP-9−/− cells. To investigate whether the homologous CBD from human fibronectin also inhibited cell migration, we first showed that fragmentation of fibronectin is a feature of breast cancer tumors and that several fragments contained the CBD. However, the recombinant fibronectin domain did not alter cell migration on collagen. This lack of effect on cell migration was explored in competitive protein-protein binding assays, which showed that the affinity of MMP-2 for collagen exceeds that of fibronectin. Furthermore, whereas the isolated MMP-2 CBD inhibited the gelatinolytic activities of MMP-2 and tumor extracts, such an inhibition was not characteristic of the corresponding fibronectin domain. Together, our results provide evidence that MMP-2 is an important determinant of cancer cell behavior but is not inhibited by the collagen binding segment of fibronectin.

Keywords

Kinetics, Binding Sites, Cell Movement, Cell Line, Tumor, Fibrosarcoma, Humans, Matrix Metalloproteinase 2, Collagen, Fibronectins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!