Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Inorganic Biochemistry
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanism of radical production from the reaction of cytochrome C with organic hydroperoxides: An ESR spin trapping investigation

Authors: D P, Barr; R P, Mason;

Mechanism of radical production from the reaction of cytochrome C with organic hydroperoxides: An ESR spin trapping investigation

Abstract

The mechanism for the reaction of cytochrome c with t-butyl hydroperoxide and cumene hydroperoxide was investigated. ESR spin trapping studies using 5,5-dimethyl-1-pyrroline N-oxide were performed to demonstrate the presence of hydroperoxide-derived peroxyl, alkoxyl, and methyl radicals. Computer simulation of the experimental data obtained at various 5,5-dimethyl-1-pyrroline N-oxide concentrations was used to determine the relative contributions of each radical adduct to each composite ESR spectrum. From these analyses, it was concluded that the alkoxyl radical of the hydroperoxide was the initial radical produced, presumably by homolytic scission of the O-O bond by ferric cytochrome c. This was in contrast to a previous ESR study that proposed a heterolytic peroxidase-type mechanism for the reaction of cytochrome c with organic hydroperoxides. Methyl radicals were produced from the beta-scission of the alkoxyl radical. The peroxyl radicals are shown to be secondary products formed from the reaction of oxygen with the methyl radical to produce the methyl peroxyl radical. In separate experiments, visible absorption spectroscopy revealed that the heme center was destroyed during the reaction. Both the heme destruction and production of radical adducts were inhibited by cyanide, presumably due to the formation of a cyanoheme complex.

Related Organizations
Keywords

Free Radicals, Electron Spin Resonance Spectroscopy, Cytochrome c Group, Deferoxamine, Peroxides, Cyclic N-Oxides, Oxygen, Models, Chemical, tert-Butylhydroperoxide, Spectrophotometry, Alcohols, Benzene Derivatives, Computer Simulation, Spin Labels, Reactive Oxygen Species, Methane

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 10%
Top 10%
Top 10%
gold