Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 2011 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional Analysis of Molybdopterin Biosynthesis in Mycobacteria Identifies a Fused Molybdopterin Synthase in Mycobacterium tuberculosis

Authors: Monique J, Williams; Bavesh D, Kana; Valerie, Mizrahi;

Functional Analysis of Molybdopterin Biosynthesis in Mycobacteria Identifies a Fused Molybdopterin Synthase in Mycobacterium tuberculosis

Abstract

ABSTRACT Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the moaA1-moaD1 gene cluster and a derivative in which moaD2 was also deleted were significantly impaired for growth in media containing nitrate as a sole nitrogen source, indicating a reduced availability of MoCo to support the assimilatory function of the MoCo-dependent nitrate reductase, NarGHI. However, the double mutant displayed residual respiratory nitrate reductase activity, suggesting that it retains the capacity to produce MoCo. The M. tuberculosis moaD and moaE homologs were further analyzed by expressing these genes in mutant strains of M. smegmatis that lacked one or both of the sole molybdopterin (MPT) synthase-encoding genes, moaD2 and moaE2 , and were unable to grow on nitrate, presumably as a result of the loss of MoCo-dependent nitrate assimilatory activity. Expression of M. tuberculosis moaD2 in the M. smegmatis moaD2 mutant and of M. tuberculosis moaE1 or moaE2 in the M. smegmatis moaE2 mutant restored nitrate assimilation, confirming the functionality of these genes in MPT synthesis. Expression of M. tuberculosis moaX also restored MoCo biosynthesis in M. smegmatis mutants lacking moaD2 , moaE2 , or both, thus identifying MoaX as a fused MPT synthase. By implicating multiple synthase-encoding homologs in MoCo biosynthesis, these results suggest that important cellular functions may be served by their expansion in M. tuberculosis .

Keywords

Time Factors, Transcription, Genetic, Pteridines, Coenzymes, Gene Expression Regulation, Bacterial, Mycobacterium tuberculosis, Gene Expression Regulation, Enzymologic, Sulfurtransferases, Metalloproteins, Molybdenum Cofactors, Conserved Sequence, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze