Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation

Authors: Gencay Hatiboglu; Stefan Koch; Jessica Herbst; Sergio P. Acebrón; Christof Niehrs;

Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation

Abstract

The canonical Wnt signaling pathway is of paramount importance in development and disease. An emergent question is whether the upstream cascade of the canonical Wnt pathway has physiologically relevant roles beyond β-catenin-mediated transcription, which is difficult to study due to the pervasive role of this protein. Here, we show that transcriptionally silent spermatozoa respond to Wnt signals released from the epididymis and that mice mutant for the Wnt regulator Cyclin Y-like 1 are male sterile due to immotile and malformed spermatozoa. Post-transcriptional Wnt signaling impacts spermatozoa through GSK3 by (1) reducing global protein poly-ubiquitination to maintain protein homeostasis; (2) inhibiting septin 4 phosphorylation to establish a membrane diffusion barrier in the sperm tail; and (3) inhibiting protein phosphatase 1 to initiate sperm motility. The results indicate that Wnt signaling orchestrates a rich post-transcriptional sperm maturation program and invite revisiting transcription-independent Wnt signaling in somatic cells as well.

Keywords

Epididymis, Male, Biochemistry, Genetics and Molecular Biology(all), Sperm Maturation, Glycogen Synthase Kinase 3, Mice, Axin Protein, Gene Expression Regulation, Cyclins, Animals, Phosphorylation, RNA Processing, Post-Transcriptional, Protein Processing, Post-Translational, Wnt Signaling Pathway, Septins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 1%
Top 10%
Top 1%
hybrid