Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonlinear dynamics of flute modes and self-organization phenomena in turbulent magnetized plasma

Authors: C Zucca; Zh N Andrushchenko; V P Pavlenko;

Nonlinear dynamics of flute modes and self-organization phenomena in turbulent magnetized plasma

Abstract

A two-fields model that self-consistently describes the coupled, spectral dynamics of flute mode large-scale flows turbulence is presented. This model has a characteristic form of a 'predator–prey' system, in which the populations of flute mode quanta (prey), growing via linear instability, generate large-scale flows (predators) through Reynolds stress. Concurrently, the mean flow growth regulates the prey population. To understand the long term nonlinear evolution of this one-prey two-predator system, a low-dimensional prototype of the model was constructed, assuming that the dynamics of such a complex system can be described within a phenomenological zero-dimensional approach. It is shown in the frame of this model that the dynamic outcome of interactions between the three system components may lead, depending on the system parameters, to their coexistence in the form of oscillatory solutions corresponding to quasi-periodic bursting of turbulence intensity level. These solutions are consistent with the time dependent behaviour of flute mode turbulence recently observed in numerical simulations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!