Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation

Authors: Na Xu; Ao Hu; Ximing Pu; Jiangfeng Li; Xingming Wang; Juan Wang; Zhongbing Huang; +2 Authors

Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation

Abstract

Both the low energy density of near-infrared (NIR) photothermal conversion during treatment and the recurrence and metastasis after local treatment have been the main obstacles and conundrums in polydopamine-mediated tumor photothermal therapy (PTT). Herein, On the basis of the enhancement of NIR absorption by ligand to metal charge transfer (LMCT) in transition-metal complexes and the activation of antitumor immunity by an appropriate concentration of Fe(III) ions, Fe(III)-chelated PDA nanoparticles (Fe-PDA NPs) with high loading and responsive release of iron ions were synthesized through a prechelation-polymerization method. First, Fe(III) chelated with the catechol groups in DA to form a mono-dopa-Fe(III) chelate, and then the polymerization of dopamine was initiated under alkaline conditions. The results revealed that the mono-dopa-Fe(III) chelate was still the main form of the Fe ion existing in Fe-PDA and was able to greatly enhance the light absorption behaviors of PDA in NIR, resulting a superior photothermal conversion ability (η = 55.5%). Moreover, the existence of Fe(III) also gave Fe-PDA a T1-weighted MRI contrast-enhancement performance (r1 = 7.668 mM-1 s-1) and it would enable the accurate ablation of primary tumors in vivo with Fe-PDA under NIR irradiation by means of the guidance of MRI and thermal imaging. Furthermore, Fe-PDA exhibited better H2O2-responsive biodegradability in comparison to PDA and easily released Fe ions in tumors, which could effectively promote the tumor-associated macrophage (TAM) repolarization to the M1 mode. TAM repolarization combined with the immunogenic cell death (ICD) induced by PTT could effectively enhance the efficacy of immunotherapy, preventing tumor recurrence and metastasis. The design of Fe-PDA nanoparticles should provide more inspiration for structural and functional improvements of melanin-based materials in tumor suppression.

Related Organizations
Keywords

Ions, Indoles, Polymers, Hydrogen Peroxide, Phototherapy, Ferric Compounds, Cell Line, Tumor, Neoplasms, Humans, Nanoparticles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?