
doi: 10.1007/bf01919534
pmid: 8620934
A proportion of the population is exposed to acute doses of ionizing radiation through medical treatment or occupational accidents, with little knowledge of the immediate effects. At the cellular level, ionizing radiation leads to the activation of a genetic program which enables the cell to increase its chances of survival and to minimize detrimental manifestations of radiation damage. Cytotoxic stress due to ionizing radiation causes genetic instability, alterations in the cell cycle, apoptosis, or necrosis. Alterations in the G1, S and G2 phases of the cell cycle coincide with improved survival and genome stability. The main cellular factors which are activated by DNA damage and interfere with the cell cycle controls are: p53, delaying the transition through the G1-S boundary; p21WAF1/CIP1, preventing the entrance into S-phase; proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), blocking DNA replication; and the p53 variant protein p53 as together with the retinoblastoma protein (Rb), with less defined functions during the G2 phase of the cell cycle. By comparing a variety of radioresistant cell lines derived from radiosensitive ataxia telangiectasia cells with the parental cells, some essential mechanisms that allow cells to gain radioresistance have been identified. The results so far emphasise the importance of an adequate delay in the transition from G2 to M and the inhibition of DNA replication in the regulation of the cell cycle after exposure to ionizing radiation.
Ataxia Telangiectasia, Cell Cycle, Animals, Humans, DNA Damage
Ataxia Telangiectasia, Cell Cycle, Animals, Humans, DNA Damage
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
