<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Current and proposed remote space missions, such as the proposed aerial exploration of Titan by an aerobot, often can collect more data than can be communicated back to Earth. Autonomous selective downlink algorithms can choose informative subsets of data to improve the science value of these bandwidth-limited transmissions. This requires statistical descriptors of the data that reflect very abstract and subtle distinctions in science content. We propose a metric learning strategy that teaches algorithms how best to cluster new data based on training examples supplied by domain scientists. We demonstrate that clustering informed by metric learning produces results that more closely match multiple scientists’ labelings of aerial data than do clusterings based on random or periodic sampling. A new metric-learning strategy accommodates training sets produced by multiple scientists with different and potentially inconsistent mission objectives. Our methods are fit for current spacecraft processors (e.g., RAD750) and would further benefit from more advanced spacecraft processor architectures, such as OPERA.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |