Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: An anthrax toxin receptor

Authors: Darran J. Wigelsworth; Heather M. Scobie; D.B. Lacy; John A. Young; Robert J. Collier;

Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: An anthrax toxin receptor

Abstract

Anthrax toxin is released from Bacillus anthracis as three monomeric proteins, which assemble into toxic complexes at the surface of receptor-bearing host cells. One of the proteins, protective antigen (PA), binds to receptors and orchestrates the delivery of the other two (the lethal and edema factors) into the cytosol. PA has been shown to bind to two cellular receptors: anthrax toxin receptor/tumor endothelial marker 8 and capillary morphogenesis protein 2 (CMG2). Both are type 1 membrane proteins that include an ≈200-aa extracellular von Willebrand factor A (VWA) domain with a metal ion-dependent adhesion site (MIDAS) motif. The anthrax toxin receptor/tumor endothelial marker 8 and CMG2 VWA domains share ≈60% amino acid identity and bind PA directly in a metal-dependent manner. Here, we report the crystal structure of the CMG2 VWA domain, with and without its intramolecular disulfide bond, to 1.5 and 1.8 Å, respectively. Both structures contain a carboxylate ligand-mimetic bound at the MIDAS and appear as open conformations when compared with the VWA domains from α-integrins. The CMG2 structures provide a template to begin probing the high-affinity CMG2–PA interaction (200 pM) and may facilitate understanding of toxin assembly/internalization and the development of new anthrax treatments. The structural data also allow molecular interpretation of known CMG2 VWA domain mutations linked to the genetic disorders, juvenile hyaline fibromatosis, and infantile systemic hyalinosis.

Related Organizations
Keywords

Models, Molecular, Receptors, Peptide, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, von Willebrand Factor, Humans, Membrane Proteins, Amino Acid Sequence, Crystallography, X-Ray

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 1%
bronze