Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2002 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multimerization via Its Myosin Domain Facilitates Nuclear Localization and Inhibition of Core Binding Factor (CBF) Activities by the CBFβ-Smooth Muscle Myosin Heavy Chain Myeloid Leukemia Oncoprotein

Authors: Tanawan Kummalue; Alan D. Friedman; Jianrong Lou;

Multimerization via Its Myosin Domain Facilitates Nuclear Localization and Inhibition of Core Binding Factor (CBF) Activities by the CBFβ-Smooth Muscle Myosin Heavy Chain Myeloid Leukemia Oncoprotein

Abstract

In CBFbeta-SMMHC, core binding factor beta (CBFbeta) is fused to the alpha-helical rod domain of smooth muscle myosin heavy chain (SMMHC). We generated Ba/F3 hematopoietic cells expressing a CBFbeta-SMMHC variant lacking 28 amino acids homologous to the assembly competence domain (ACD) required for multimerization of skeletal muscle myosin. CBFbeta-SMMHC(DeltaACD) multimerized less effectively than either wild-type protein or a variant lacking a different 28-residue segment. In contrast to the control proteins, the DeltaACD mutant did not inhibit CBF DNA binding, AML1-mediated reporter activation, or G(1) to S cell cycle progression, the last being dependent upon activation of CBF-regulated genes. We also linked the CBFbeta domain to 149 or 83 C-terminal CBFbeta-SMMHC residues, retaining 86 or 20 amino acids N-terminal to the ACD. CBFbeta-SMMHC(149C) multimerized and slowed Ba/F3 proliferation, whereas CBFbeta-SMMHC(83C) did not. The majority of CBFbeta-SMMHC and CBFbeta-SMMHC(149C) was detected in the nucleus, whereas the DeltaACD and 83C variants were predominantly cytoplasmic, indicating that multimerization facilitates nuclear retention of CBFbeta-SMMHC. When linked to the simian virus 40 nuclear localization signal (NLS), a significant fraction of CBFbeta-SMMHC(DeltaACD) entered the nucleus but only mildly inhibited CBF activities. As NLS-CBFbeta-SMMHC(83C) remained cytoplasmic, we directed the ACD to CBF target genes by linking it to the AML1 DNA binding domain or to full-length AML1. These AML1-ACD fusion proteins did not affect Ba/F3 proliferation, in contrast to AML1-ETO, which markedly slowed G(1) to S progression dependent upon the integrity of its DNA-binding domain. Thus, the ACD facilitates inhibition of CBF by mediating multimerization of CBFbeta-SMMHC in the nucleus. Therapeutics targeting the ACD may be effective in acute myeloid leukemia cases associated with CBFbeta-SMMHC expression.

Related Organizations
Keywords

Myosin Heavy Chains, Polymers, Recombinant Fusion Proteins, Nuclear Localization Signals, Active Transport, Cell Nucleus, Smooth Muscle Myosins, Cell Line, Protein Structure, Tertiary, DNA-Binding Proteins, Transcription Factor AP-2, Genes, Reporter, Leukemia, Myeloid, Animals, Humans, Protein Isoforms, Amino Acid Sequence, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research