
pmid: 30440821
Magnetomyography utilizes magnetic sensors to record small magnetic fields produced by the electrical activity of muscles, which also gives rise to the electromyogram (EMG) signal typically recorded with surface electrodes. Detection and recording of these small fields requires sensitive magnetic sensors possibly equipped with a CMOS readout system. This paper presents a highly sensitive Hall sensor fabricated in a standard $0.18~\mu \mathrm {m}$ CMOS technology for future low-field MMG applications. Compared with previous works, our experimental results show that the proposed Hall sensor achieves a higher current mode sensitivity of approximately 2400 V/A/mT. Further refinement is required to enable measurement of MMG signals from muscles.
Wearable Electronic Devices, Magnetic Fields, Electromyography
Wearable Electronic Devices, Magnetic Fields, Electromyography
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
