Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

UDP-Glucose Pyrophosphorylase Is a Novel Plant Cell Death Regulator

Authors: Daniel F. A. Tomé; Daniel F. A. Tomé; Stephen Chivasa; Antoni R. Slabas;

UDP-Glucose Pyrophosphorylase Is a Novel Plant Cell Death Regulator

Abstract

Programmed cell death (PCD) is an essential process that functions in plant organ sculpture, tissue differentiation, nutrient recycling, and defense against pathogen attack. A full understanding of the mechanism of PCD in plants is hindered by the limited identification of protein components of the complex signaling circuitry that underpins this important physiological process. Here we have used Arabidopsis thaliana and fumonisin B1 (FB1) to identify proteins that constitute part of the PCD signaling network. We made an inadvertent, but important observation that exogenous sucrose modulates FB1-induced cell death and identified sucrose-induced genes from publicly available transcriptomic data sets for reverse genetic analyses. Using transfer-DNA gene knockout plants, UDP-glucose pyrophosphorylase 1 (UGP1), a sucrose-induced gene, was demonstrated to be a critical factor that regulates FB1-induced PCD. We employed 2D-DiGE to identify proteomic changes preceding PCD after exposure of Arabidopsis to FB1 and used UGP1 knockout plants to refine the analysis and isolate downstream candidate proteins with a putative PCD regulatory function. Our results reveal chloroplasts as the predominantly essential organelles in FB1-induced PCD. Overall, this study reveals a novel function of UGP1 as a cell death regulator and provides candidate proteins likely recruited downstream in the activation of plant PCD.

Related Organizations
Keywords

Sucrose, Chloroplasts, Cell Death, UTP-Glucose-1-Phosphate Uridylyltransferase, Arabidopsis Proteins, Arabidopsis, Plants, Genetically Modified, Fumonisins, Mixed Function Oxygenases, Gene Knockout Techniques, Gene Expression Regulation, Plant, Plant Cells, Computer Simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!