Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genome Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 2008
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation

Authors: M. E. Dinger; P. P. Amaral; T. R. Mercer; K. C. Pang; S. J. Bruce; B. B. Gardiner; M. E. Askarian Amiri; +8 Authors

Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation

Abstract

The transcriptional networks that regulate embryonic stem (ES) cell pluripotency and lineage specification are the subject of considerable attention. To date such studies have focused almost exclusively on protein-coding transcripts. However, recent transcriptome analyses show that the mammalian genome contains thousands of long noncoding RNAs (ncRNAs), many of which appear to be expressed in a developmentally regulated manner. The functions of these remain untested. To identify ncRNAs involved in ES cell biology, we used a custom-designed microarray to examine the expression profiles of mouse ES cells differentiating as embryoid bodies (EBs) over a 16-d time course. We identified 945 ncRNAs expressed during EB differentiation, of which 174 were differentially expressed, many correlating with pluripotency or specific differentiation events. Candidate ncRNAs were identified for further characterization by an integrated examination of expression profiles, genomic context, chromatin state, and promoter analysis. Many ncRNAs showed coordinated expression with genomically associated developmental genes, such as Dlx1, Dlx4, Gata6, and Ecsit. We examined two novel developmentally regulated ncRNAs, Evx1as and Hoxb5/6as, which are derived from homeotic loci and share similar expression patterns and localization in mouse embryos with their associated protein-coding genes. Using chromatin immunoprecipitation, we provide evidence that both ncRNAs are associated with trimethylated H3K4 histones and histone methyltransferase MLL1, suggesting a role in epigenetic regulation of homeotic loci during ES cell differentiation. Taken together, our data indicate that long ncRNAs are likely to be important in processes directing pluripotency and alternative differentiation programs, in some cases through engagement of the epigenetic machinery.

Keywords

Genetics & Heredity, Pluripotent Stem Cells, Biochemistry & Molecular Biology, 2716 Genetics (clinical), RNA, Untranslated, Gene Expression Profiling, Cell Differentiation, Embryo, Mammalian, Chromatin, Mice, Biotechnology & Applied Microbiology, 1311 Genetics, Animals, Cell Lineage, Female, Carrier Proteins, Promoter Regions, Genetic, Embryonic Stem Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    686
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
686
Top 1%
Top 1%
Top 0.1%
bronze