Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antimony-Based Antileishmanial Compounds Prolong the Cardiac Action Potential by an Increase in Cardiac Calcium Currents

Authors: Yuri A, Kuryshev; Lu, Wang; Barbara A, Wible; Xiaoping, Wan; Eckhard, Ficker;

Antimony-Based Antileishmanial Compounds Prolong the Cardiac Action Potential by an Increase in Cardiac Calcium Currents

Abstract

Antimonial agents are a mainstay for the treatment of leishmaniasis, a group of protozoal diseases that includes visceral leishmaniasis, or Kala Azar. Chemotherapy with trivalent potassium antimony tartrate (PAT) and, more importantly, pentavalent antimony-carbohydrate complexes, such as sodium stibogluconate (SSG), has been reported to prolong the QT interval and produce life-threatening arrhythmias. PAT is chemically related to As2O3, which alters cardiac excitability by inhibition of human ether a-go-go related gene (hERG) trafficking and an increase of cardiac calcium currents. In this study, we report that PAT does not block hERG currents on short-term exposure but reduces current density on long-term exposure (IC50, 11.8 microM) and inhibits hERG maturation on Western blots (IC50, 62 microM). Therapeutic concentrations of 0.3 microM PAT increase cardiac calcium currents from -4.8 +/- 0.7 to -7.3 +/- 0.5 pA/pF at 10 mV. In marked contrast, pentavalent SSG, the drug of choice for the treatment of leishmaniasis, did not affect hERG/IKr or any other cardiac potassium current at therapeutic concentrations. However, both cardiac sodium and calcium currents were significantly increased on long-term exposure to 30 microM SSG in isolated guinea pig ventricular myocytes. We propose that the increase in calcium currents from -3.2 +/- 0.3 to -5.1 +/- 0.3 pA/pF at 10 mV prolongs APD90 from 464 +/- 35 to 892 +/- 64 ms. Our data suggest that conversion of Sb(V) into active Sb(III) in patients produces a common mode of action for antimonial drugs, which define a novel compound class that increases cardiac risk not by a reduction of hERG/IKr currents but-for the first time-by an increase in cardiac calcium currents.

Related Organizations
Keywords

Antimony, Myocardium, Antiprotozoal Agents, Action Potentials, Ether-A-Go-Go Potassium Channels, Cell Line, Long QT Syndrome, Torsades de Pointes, Humans, Leishmaniasis, Visceral, Calcium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!