Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chinese Journal of G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chinese Journal of Geophysics
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Differential Effective Medium Model of Multiple‐Porosity Rock and Its Analytical Approximations for Dry Rock

Authors: LI Hong‐Bing; ZHANG Jia‐Jia;

A Differential Effective Medium Model of Multiple‐Porosity Rock and Its Analytical Approximations for Dry Rock

Abstract

AbstractThe classic differential effective medium (DEM) theory can be used to determine the elastic properties of the porous medium, but the final elastic properties of multiple‐porosity rock depend on the order of adding the different pore‐type inclusions due to the lack of DEM equations for multiple‐porosity rock. This paper first derives the differential equations of both Zimmermann's and Norris's versions for multiple‐porosity rock from the Kuster‐Toksöz theory. The elastic moduli predicted by the DEM equations of Norris's version never violate Hashin‐Shtrikman bounds while those predicted by the DEM equations of Zimmermann's version violate bounds in some cases. Then, we derive analytical solutions of the bulk and shear moduli for dry rock from the differential equations of Norris's version by applying an analytical approximation for dry‐rock modulus ratio, in order to decouple these equations. The validity of these analytical approximations is tested by integrating the full DEM equation numerically. The analytical formulae give good estimates of the numerical results over the whole porosity range. The analytical formulae have been used to predict the elastic moduli for the sandstone experimental data by assuming that the porous rock contains dual‐porosity of both cracks and pores. The results show that they can accurately predict the variations of elastic moduli with porosity for dry sandstones. We also apply nonlinear global optimization algorithm to find the best estimate for the pore volume percentage of both cracks and pores by minimizing the error between theoretical predictions and experimental measurements based on the dual‐porosity DEM analytical model. The inversion results of the sandstone experimental data show that there is no direct correlation between the crack volume percentage and clay volume.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!