
pmid: 25731034
The number, potential viability, and taxonomic diversity (at the level of phylum) of the filterable forms of prokaryotes (FFP) are estimated in the main genetic horizons of high-moor peat. It was shown that the number of FFP reached 500 million cells in 1 g, i.e., up to 5% of the general size bacteria. The portion of viable cells among FFP (93-98%) was higher than that for the general size bacteria (60-68%). FISH-analysis (fluorescence in situ hybridization) showed that FFP contained the same phylogenetic groups as the population of general size bacteria (domain Archea and phylum Actinobacteria, Cytophaga, and Proteobacteria of the domain Bacteria).
Soil, Bacteria, Prokaryotic Cells, RNA, Ribosomal, 16S, Sphagnopsida, Genetic Variation, In Situ Hybridization, Fluorescence, Phylogeny, Soil Microbiology
Soil, Bacteria, Prokaryotic Cells, RNA, Ribosomal, 16S, Sphagnopsida, Genetic Variation, In Situ Hybridization, Fluorescence, Phylogeny, Soil Microbiology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
