Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required

Authors: Frances C Sussmilch; Timothy J Brodribb; Scott A M McAdam;

Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required

Abstract

A major environmental signal influencing day-time stomatal aperture is the vapour pressure deficit between the leaf and atmosphere (VPD). In angiosperms, increased VPD triggers biosynthesis of abscisic acid (ABA), prompting rapid stomatal closure. Altered cell turgor has been proposed as the trigger for ABA biosynthesis, but the timing and nature of the genetic signals linking these processes have remained uncertain. We investigated this in Arabidopsis by examining changes induced by a decrease in leaf turgor, simulating a natural increase in VPD. We found that the rate-limiting gene within the de novo ABA biosynthesis pathway, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), was induced and ABA levels increased within just 5 min of decreased leaf turgor. This rapid induction matches the time-frame for initiation of stomatal closure in response to a doubling in VPD. We further examined Arabidopsis histidine kinase1 (AHK1) as the most likely candidate for the turgor-sensing receptor involved, but found no significant difference between wild-type and an ahk1 null mutant in the induction of ABA-biosynthetic genes, ABA production, or stomatal behaviour. We show that decreased leaf turgor triggers de novo ABA biosynthesis within the time-frame of the stomatal response to VPD, but that AHK1 does not fulfil a critical role as a turgor-sensing receptor within this pathway.

Related Organizations
Keywords

Histidine Kinase, Arabidopsis Proteins, Arabidopsis, Plant Transpiration, Dioxygenases, Up-Regulation, Plant Leaves, Atmospheric Pressure, Gene Expression Regulation, Plant, Plant Stomata, Research Paper, Abscisic Acid, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 1%
Top 10%
Top 1%
Green
hybrid