Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2004 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HLA-B27 in Transgenic Rats Forms Disulfide-Linked Heavy Chain Oligomers and Multimers That Bind to the Chaperone BiP

Authors: Tri Minh, Tran; Nimman, Satumtira; Martha L, Dorris; Ekkehard, May; Andrew, Wang; Eiichi, Furuta; Joel D, Taurog;

HLA-B27 in Transgenic Rats Forms Disulfide-Linked Heavy Chain Oligomers and Multimers That Bind to the Chaperone BiP

Abstract

Abstract To test the hypothesis that HLA-B27 predisposes to disease by forming disulfide-linked homodimers, we examined rats transgenic for HLA-B27, mutant Cys67Ser HLA-B27, or HLA-B7. In splenic Con A blasts from high transgene copy B27 lines that develop inflammatory disease, the anti-H chain mAb HC10 precipitated four bands of molecular mass 78–105 kDa and additional higher molecular mass material, seen by nonreducing SDS-PAGE. Upon reduction, all except one 78-kDa band resolved to 44 kDa, the size of the H chain monomer. The 78-kDa band was found to be BiP/Grp78, and the other high molecular mass material was identified as B27 H chain. Analysis of a disease-resistant low copy B27 line showed qualitatively similar high molecular mass bands that were less abundant relative to H chain monomer. Disease-prone rats with a Cys67Ser B27 mutant showed B27 H chain bands at 95 and 115 kDa and a BiP band at 78 kDa, whereas only scant high molecular mass bands were found in cells from control HLA-B7 rats. 125I-surface labeled B27 oligomers were immunoprecipitated with HC10, but not with a mAb to folded B27-β2-microglobulin-peptide complexes. Immunoprecipitation of BiP with anti-BiP Abs coprecipitated B27 H chain multimers. Folding and maturation of B27 were slow compared with B7. These data indicate that disulfide-linked intracellular H chain complexes are more prone to form and bind BiP in disease-prone wild-type B27 and B27-C67S rats than in disease-resistant HLA-B7 rats. The data support the hypothesis that accumulation of misfolded B27 participates in the pathogenesis of B27-associated disease.

Related Organizations
Keywords

Antibodies, Monoclonal, Endoplasmic Reticulum, Rats, Animals, Genetically Modified, Molecular Weight, HLA-B7 Antigen, Protein Subunits, Rats, Inbred Lew, Animals, Binding Sites, Antibody, Disulfides, Transgenes, Carrier Proteins, Endoplasmic Reticulum Chaperone BiP, Protein Processing, Post-Translational, HLA-B27 Antigen, Heat-Shock Proteins, Spleen, Molecular Chaperones, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
bronze