Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local extravascular pool of C3 is a determinant of postischemic acute renal failure

Authors: Farrar, C A; Zhou, W D; Lin, T; Sacks, S H;

Local extravascular pool of C3 is a determinant of postischemic acute renal failure

Abstract

The third complement component (C3) is an acute phase protein that plays a central role in reperfusion injury in several organ models. To investigate the contribution of local synthesis of C3 and distinguish it from that of circulating complement mainly produced by hepatic synthesis, we employed a mouse renal isograft model. Our model demonstrated a close relationship between the extent of intrarenal expression of C3 and cold-ischemia induced injury. Ischemic C3-positive donor kidneys transplanted into C3-positive or C3-negative recipients developed widespread tissue damage and severe acute renal failure. In contrast, ischemic C3-negative isografts exhibited only mild degrees of functional and structural disturbance, even when transplanted into normal C3-positive recipients. Thus local synthesis of C3, mostly identified in the tubular epithelium, was essential for complement-mediated reperfusion damage, whereas circulating C3 had a negligible effect. Our results suggest a two-compartment model for the pathogenic function of C3, in which the extravascular compartment is the domain of local synthesis of C3, and where the role of circulating C3 is redundant. Our data cast new light on the mechanism of complement-mediated tissue injury in nonimmunological disorders, and challenges the longstanding dogma that circulating components are the main complement effectors of extravascular tissue damage.

Keywords

Time Factors, 610, Complement C3, Intercellular Adhesion Molecule-1, Kidney, Kidney Transplantation, Cold Temperature, Mice, Transplantation, Isogeneic, Gene Expression Regulation, Reperfusion Injury, Animals, Female, RNA, Messenger, Renal Insufficiency, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    177
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
177
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?