Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Pharmacology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers

Authors: Yue Yin; Yawen Dong; Simon Vu; Fan Yang; Vladimir Yarov‐Yarovoy; Yuhua Tian; Jie Zheng;

Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers

Abstract

Background and PurposeLike chili peppers, gingers produce pungent stimuli by a group of vanilloid compounds that activate the nociceptive transient receptor potential vanilloid 1 (TRPV1) ion channel. How these compounds interact with TRPV1 remains unclear.Experimental ApproachWe used computational structural modelling, functional tests (electrophysiology and calcium imaging), and mutagenesis to investigate the structural mechanisms underlying ligand–channel interactions.Key ResultsThe potency of three principal pungent compounds from ginger —shogaol, gingerol, and zingerone—depends on the same two residues in the TRPV1 channel that form a hydrogen bond with the chili pepper pungent compound, capsaicin. Computational modelling revealed binding poses of these ginger compounds similar to those of capsaicin, including a “head‐down tail‐up” orientation, two specific hydrogen bonds, and important contributions of van der Waals interactions by the aliphatic tail. Our study also identified a novel horizontal binding pose of zingerone that allows it to directly interact with the channel pore when bound inside the ligand‐binding pocket. These observations offer a molecular level explanation for how unique structures in the ginger compounds affect their channel activation potency.Conclusions and ImplicationsMechanistic insights into the interactions of ginger compounds and the TRPV1 cation channel should help guide drug discovery efforts to modulate nociception.

Country
United States
Related Organizations
Keywords

1.1 Normal biological development and functioning, Cells, Aversive Agents, TRPV Cation Channels, Ginger, Ligands, Dose-Response Relationship, Mice, Structure-Activity Relationship, Underpinning research, Zingiber officinale, Animals, Humans, Pharmacology & Pharmacy, Cells, Cultured, Cultured, Biomedical and Clinical Sciences, Dose-Response Relationship, Drug, Molecular Structure, Pharmacology and Pharmaceutical Sciences, Molecular Docking Simulation, Pharmacology and pharmaceutical sciences, HEK293 Cells, Calcium, Drug, Capsaicin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green
bronze