Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Research in...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Research in Toxicology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel Oxidatively Activated Agents Modify DNA and Are Enhanced by Ercc1 Silencing

Authors: Amy R, Jones; Tiffany R, Bell-Horwath; Guorui, Li; Stephanie M, Rollmann; Edward J, Merino;

Novel Oxidatively Activated Agents Modify DNA and Are Enhanced by Ercc1 Silencing

Abstract

Agents that chemically modify DNA form a backbone of many cancer treatments. A key problem for DNA-modifying agents is lack of specificity. To address this issue, we designed novel molecular scaffolds, termed An-Hq and An-Hq(2), which are activated by a hallmark of some cancers: elevated concentrations of reactive oxygen species. Elevated reactive oxygen species are linked to oncogenesis and are found to increase in several aggressive cancers. The agents are quinones that, upon oxidation, form highly electrophilic species. In vitro studies identified the mode of addition to DNA. The aniline portion of An-Hq serves to enhance nucleophilic addition to the ethyl phenyl ether instead of forming common Michael additions. Structural characterization showed that the agents add to 2'-deoxyguanosine at the N2,N3-positions. The product formed is a bulky hydroxy-N2,3-benzetheno-2'-deoxyguanosine adduct. In addition, the oxidatively activated agents added to 2'-deoxyadenosine and 2'-deoxycytidine but not thymidine or 2'-deoxyinosine. These findings are confirmed by primer extension analysis of a 392 base pair DNA. The full-length primer extension product was reduced by 69.0 ± 0.6% upon oxidative activation of An-Hq(2) as compared to controls. Little sequence dependence was observed with 76% of guanine, adenine, and cytosine residues showing an increase in extension stops between 2- and 4-fold above controls. Benzetheno-nucleobase addition to double-stranded DNA was confirmed by LC/MS of a self-complementary oligonucletide. Experiments were carried out to confirm in vivo DNA damage. Because of the lesion identified in vitro, we reasoned that nucleotide excision repair should be involved in reversing the effects of these oxidatively activated agents and enhance toxicity in Drosophila melanogaster. Using an RNAi-based approach, Ercc1 was silenced, and survival was monitored after injection of an agent. As expected, bulky cross-linking DNA-modifying agents, cisplatin and chlorambucil, showed statistically significant enhanced toxicity in Drosophila with silenced Ercc1. In addition, 5-fluorouracil, which does not produce bulky lesions, showed no selective toxicity. An-Hq and An-Hq(2) showed statistically significant toxicity in Drosophila with silenced Ercc1. Examination of cytotoxicity shows renal carcinoma cell lines as a target of these agents with a median IC(50) of 1.8 μM. Taken together, these data show that the designed oxidatively activated agents form distinct, bulky DNA modifications that prove difficult for cancer cells possessing an elevated reactive oxygen species phenotype to overcome. The modification produced is relatively unique among anticancer agents.

Related Organizations
Keywords

Aza Compounds, Aniline Compounds, Dose-Response Relationship, Drug, Molecular Structure, Cell Survival, Antineoplastic Agents, DNA, DNA-Binding Proteins, Structure-Activity Relationship, Phenols, Cell Line, Tumor, Animals, Drosophila Proteins, Humans, Drosophila, Gene Silencing, Drug Screening Assays, Antitumor, Reactive Oxygen Species, Oxidation-Reduction, DNA Damage

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
bronze
Related to Research communities
Cancer Research