Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Analysis on Matching Mechanisms and Token Pruning for Late-interaction Models

Authors: Qi Liu 0071; Gang Guo; Jiaxin Mao; Zhicheng Dou; Ji-Rong Wen; Hao Jiang 0022; Xinyu Zhang 0019; +1 Authors

An Analysis on Matching Mechanisms and Token Pruning for Late-interaction Models

Abstract

With the development of pre-trained language models, the dense retrieval models have become promising alternatives to the traditional retrieval models that rely on exact match and sparse bag-of-words representations. Different from most dense retrieval models using a bi-encoder to encode each query or document into a dense vector, the recently proposed late-interaction multi-vector models (i.e., ColBERT and COIL) achieve state-of-the-art retrieval effectiveness by using all token embeddings to represent documents and queries and modeling their relevance with a sum-of-max operation. However, these fine-grained representations may cause unacceptable storage overhead for practical search systems. In this study, we systematically analyze the matching mechanism of these late-interaction models and show that the sum-of-max operation heavily relies on the co-occurrence signals and some important words in the document. Based on these findings, we then propose several simple document pruning methods to reduce the storage overhead and compare the effectiveness of different pruning methods on different late-interaction models. We also leverage query pruning methods to further reduce the retrieval latency. We conduct extensive experiments on both in-domain and out-domain datasets and show that some of the used pruning methods can significantly improve the efficiency of these late-interaction models without substantially hurting their retrieval effectiveness.

Related Organizations
Keywords

FOS: Computer and information sciences, Information Retrieval (cs.IR), Computer Science - Information Retrieval

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green