Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2004
Data sources: PubMed Central
The Journal of Cell Biology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone

Authors: Williams, Christopher C.; Allison, June G.; Vidal, Gregory A.; Burow, Matthew E.; Beckman, Barbara S.; Marrero, Luis; Jones, Frank E.;

The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone

Abstract

In the lactating breast, ERBB4 localizes to the nuclei of secretory epithelium while regulating activities of the signal transducer and activator of transcription (STAT) 5A transcription factor essential for milk-gene expression. We have identified an intrinsic ERBB4 NLS (residues 676–684) within the ERBB4 intracellular domain (4ICD) that is essential for nuclear accumulation of 4ICD. To determine the functional significance of 4ICD nuclear translocation in a physiologically relevant system, we have demonstrated that cotransfection of ERBB4 and STAT5A in a human breast cancer cell line stimulates β-casein promoter activity. Significantly, nuclear localization of STAT5A and subsequent stimulation of the β-casein promoter requires nuclear translocation of 4ICD. Moreover, 4ICD and STAT5A colocalize within nuclei of heregulin β1 (HRG)-stimulated cells and both proteins bind to the endogenous β-casein promoter in T47D breast cancer cells. Together, our results establish a novel molecular mechanism of transmembrane receptor signal transduction involving nuclear cotranslocation of the receptor intracellular domain and associated transcription factor. Subsequent binding of the two proteins at transcription factor target promoters results in activation of gene expression.

Keywords

Receptor, ErbB-4, Neuregulin-1, Nuclear Localization Signals, Active Transport, Cell Nucleus, Caseins, Breast Neoplasms, Milk Proteins, Transfection, DNA-Binding Proteins, ErbB Receptors, Gene Expression Regulation, Cell Line, Tumor, STAT5 Transcription Factor, Trans-Activators, Humans, Female, Amino Acid Sequence, Promoter Regions, Genetic, Research Articles, Molecular Chaperones, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    231
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
231
Top 10%
Top 1%
Top 1%
Green
bronze