
The complexity of network infrastructures is exponentially growing. Real-time monitoring of these infrastructures is essential to secure their reliable operation. The concept of telemetry has been introduced in recent years to foster this process by streaming time-series data that contain feature-rich information concerning the state of network components. In this paper, we focus on a particular application of telemetry — anomaly detection on time-series data. We rigorously examined state-of-the-art anomaly detection methods. Upon close inspection of the methods, we observed that none of them suits our requirements as they typically face several limitations when applied on time-series data. This paper presents Alter-Re2, an improved version of ReRe, a state-of-the-art Long Short- Term Memory-based machine learning algorithm. Throughout a systematic examination, we demonstrate that by introducing the concepts of ageing and sliding window, the major limitations of ReRe can be overcome. We assessed the efficacy of Alter-Re2 using ten different datasets and achieved promising results. Alter-Re2 performs three times better on average when compared to ReRe.
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
