Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Advanced Manufacturing Technology
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of the wear behavior of multilayer coatings of TaZrN/TaZr produced by magnetron sputtering on AISI-316L stainless steel

Authors: Carolina Hernández Navarro; Martín Flores Martínez; Edgar Enrique Camps Carvajal; Laura Patricia Rivera Reséndiz; Ernesto David García Bustos;

Analysis of the wear behavior of multilayer coatings of TaZrN/TaZr produced by magnetron sputtering on AISI-316L stainless steel

Abstract

The AISI 316L stainless steel (316L SS) is commonly used in the orthopedic prosthesis field due to its mechanical properties, biocompatibility, and corrosion resistance. However, due to its high density and low wear resistance during sliding-contact operations, it may cause an allergic reaction due to the release of toxic ions and wear particles liberated during the sliding-contact operations. The modification of this class of metallic implants’ surface characteristics represents the most common solution to change the surface’s properties of the metal substrate, especially to improve the surface’s mechanical and tribological behavior. DC magnetron sputtering (DCMS) is a suitable technique to deposit a layer with special characteristics due to its high control of deposition parameters, improving the film quality control. On the other hand, the binary (MN) and ternary (MXN) transition nitride coatings have shown promising results, especially the titanium (Ti), tantalum (Ta), and zirconium (Zr) nitride films, showing a high wear and corrosion resistance in mono- and multilayer arrangement. This technique can control the deposition time and temperature, working pressure, substrate rotation, the flux of gases, and the distance between the substrate and targets that modify the coating characteristics. This work presents the tribological analysis of the tantalum-zirconium-nitride/tantalum-zirconium (TaZrN/TaZr) multilayer coatings sliding-contact operations. Films with 7 and 11 layers were produced using DCMS, controlling the number and thickness of the layers’ coating (LC) with the nitrogen injection to the work chamber. The films presented similar structures and chemical compositions. Similarly, the elastic modulus of both films was similar, but the 7LC coating exhibited a high harness (20 ± 0.6) than the 11LC film (17.2 ± 0.4). The variation of mechanical properties was reflected in the plastic deformation resistance (H3/E*2) and the elastic strain to the failure (H/E) ratios. Reciprocating sliding-contact tests carried out the tribological tests at applied loads of 0.5, 1, and 2N at dry conditions, employing an alumina (Al2O3) ball as a counter-body. The 7LC coating presented a higher coefficient of friction (CoF) and wear rate than 11LC film at 0.5N and 1N, but at 2N, the 11CL film was detached from the surface, increasing the wear rate value. On both films, the wear tracks presented a high material transference that produces a protected layer of tantalum oxide (Ta2O5), as was observed in the Raman spectra.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!