Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ebf3-miR218 regulation is involved in the development of dopaminergic neurons

Authors: Jongpil Kim; Soonbong Baek; Hwan Choi;

Ebf3-miR218 regulation is involved in the development of dopaminergic neurons

Abstract

The development of midbrain dopaminergic (DA) neurons is a complex process that requires the precise spatial and temporal expression of numerous genes. Here, we report that Ebf3, a transcription factor, plays a critical role in the terminal development of DA neurons. We found a specific upregulation of Ebf3 in Dicer knockout midbrain DA neurons and dynamic patterns of Ebf3 expression during the development of DA neurons. We further demonstrated that the overexpression of Ebf3 at the neural precursor stage of embryonic stem (ES) differentiation induces a significant increase in the number of TH+ DA neurons, whereas the suppression of Ebf3 leads to significant reduction in the development of TH+ DA neurons. Additionally, we found that Ebf3 is a candidate target for miR218 during DA neuronal development, such that the regulation of Ebf3 expression by miR218 controls the terminal differentiation of DA neurons. Thus, our data suggest that complex transcription factor-miRNA regulation is critical for the development of midbrain DA neurons.

Related Organizations
Keywords

Feedback, Physiological, Mice, Knockout, Ribonuclease III, Tyrosine 3-Monooxygenase, Dopaminergic Neurons, Gene Expression Profiling, Neurogenesis, Recombinant Fusion Proteins, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, DEAD-box RNA Helicases, Mice, MicroRNAs, Mesencephalon, Transduction, Genetic, Animals, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?