Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes to Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes to Cells
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes to Cells
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Genes to Cells
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy

Authors: Hiroyuki, Mukaiyama; Masahide, Oku; Misuzu, Baba; Takeshi, Samizo; Adam T, Hammond; Benjamin S, Glick; Nobuo, Kato; +1 Authors

Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy

Abstract

AbstractBackground: In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded through direct engulfment by the vacuole in a process known as micropexophagy, but the mechanism of micropexophagy is not known.Results: To gain molecular insights into micropexophagy, we used fluorescence time‐lapse microscopy, coupled with gene‐tagging mutagenesis to isolate P. pastoris mutants defective in micropexophagy. The relevant genes have been designated PAZ genes. Morphological and genetic analyses enabled us to postulate a schematic model for micropexophagy. This new model invokes the generation of new vacuolar compartments as an intermediate structure during micropexophagy. Different classes of paz mutants arrest micropexophagy at distinct stages of the process. Most of APG‐related paz mutants ceased micropexophagy at Stage 1c and that GCN‐family paz mutants ceased micropexophagy at Stage 2. The paz2Δ strain shows a unique phenotype. Paz2 is the homologue of Saccharomyces cerevisiae Apg8, which is necessary for macroautophagy in that yeast. Our analysis revealed that in P. pastoris, Paz2 plays a key role in repressing the engulfment of peroxisomes by the vacuole before the onset of micropexophagy. Paz2 is proteolytically processed by another autophagy‐related Paz protein Paz8, but this processing is not required for the ability of Paz2 to suppress aberrant micropexophagy.Conclusion: Micropexophagy has been dissected into a multistep reaction that involves 14 identified Paz gene products. Our studies indicate that Paz2 controls the engulfment of peroxisomes by the vacuole, pointing to a novel early function of this protein.

Keywords

Fungal Proteins, Mutagenesis, Molecular Sequence Data, Peroxisomes, Sequence Homology, Amino Acid Sequence, Protein Processing, Post-Translational, Pichia

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 1%
Top 10%
bronze