Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical Cancer Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2006
License: CC BY
Data sources: ZENODO
Clinical Cancer Research
Article . 2006 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Implication of Polycomb Members Bmi-1, Mel-18, and Hpc-2 in the Regulation of p16INK4a, p14ARF, h-TERT, and c-Myc Expression in Primary Breast Carcinomas

Authors: Gemma Domínguez; Dolores Suárez; Pilar España; Cristina Peña; Jose M. Garcia; Ruth Espinosa; Vanesa García; +4 Authors

Implication of Polycomb Members Bmi-1, Mel-18, and Hpc-2 in the Regulation of p16INK4a, p14ARF, h-TERT, and c-Myc Expression in Primary Breast Carcinomas

Abstract

Abstract Purpose: Deregulation of mammalian Polycomb group (PcG) members may contribute to human carcinogenesis. p16INK4a and p14ARF tumor suppressors, human telomerase reverse transcriptase (h-TERT), and oncoprotein c-Myc have been implicated in the regulation of the cell cycle and proliferation mediated by PcG proteins, mainly Bmi-1, in mice and in cell culture experiments. Here, we examine whether these in vitro findings can be extrapolated to the in vivo situation. Experimental Design: We measure the expression of PcG members Bmi-1, Mel-18, and Hpc-2 and their potential targets by reverse transcription-PCR, immunostaining, and Western blotting in a series of 134 breast carcinomas and correlate the data with several clinical-pathologic variables of the tumors. Results: Expression of PcG genes was variably detected, but overexpression of Bmi-1 was the most frequent PcG alteration observed. In addition, statistical direct correlation in expression level of the three PcG members was detected. A correlation between c-Myc and Bmi-1 expression levels was observed; however, there was no correlation between expression of Bmi-1 and p16INK4a, p14ARF, or h-TERT. However, expression of the other PcG members Mel-18 and Hpc-2 correlated with the cell cycle regulators. Moreover, PcG mRNA–altered expression correlated significantly with certain clinical-pathologic variables associated with poor prognosis. Conclusions: Our data suggest that the oncogenic role of Bmi-1 in human primary breast carcinomas is not determined by its capacity to inhibit INK4a/ARF proteins or to induce telomerase activity.

Keywords

Polycomb Repressive Complex 1, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Down-Regulation, Nuclear Proteins, Breast Neoplasms, Neoplasm Proteins, DNA-Binding Proteins, Proto-Oncogene Proteins c-myc, Repressor Proteins, Proto-Oncogene Proteins, Tumor Suppressor Protein p14ARF, Humans, Female, RNA, Messenger, Telomerase, Cyclin-Dependent Kinase Inhibitor p16

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 29
    download downloads 27
  • 29
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
75
Top 10%
Top 10%
Top 10%
29
27
Green
bronze