Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An improved efficient model for structure-aware lane detection of unmanned vehicles

Authors: Zezheng Lv; Xiaoci Huang; Yaozhong Liang; Wenguan Cao; Yuxiang Chong;

An improved efficient model for structure-aware lane detection of unmanned vehicles

Abstract

Lane detection algorithms require extremely low computational costs as an important part of autonomous driving. Due to heavy backbone networks, algorithms based on pixel-wise segmentation is struggling to handle the problem of runtime consumption in the recognition of lanes. In this paper, a novel and practical methodology based on lightweight Segmentation Network is proposed, which aims to achieve accurate and efficient lane detection. Different with traditional convolutional layers, the proposed Shadow module can reduce the computational cost of the backbone network by performing linear transformations on intrinsic feature maps. Thus a lightweight backbone network Shadow-VGG-16 is built. After that, a tailored pyramid parsing module is introduced to collect different sub-domain features, which is composed of both a strip pool module based on Pyramid Scene Parsing Network (PSPNet) and a convolution attention module. Finally, a lane structural loss is proposed to explicitly model the lane structure and reduce the influence of noise, so that the pixels can fit the lane better. Extensive experimental results demonstrate that the performance of our method is significantly better than the state-of-the-art (SOTA) algorithms such as Pointlanenet and Line-CNN et al. 95.28% and 90.06% accuracy and 62.5 frames per second (fps) inference speed can be achieved on the CULane and Tusimple test dataset. Compared with the latest ERFNet, Line-CNN, SAD, F1 scores have respectively increased by 3.51%, 2.84%, and 3.82%. Meanwhile, the result from our dataset exceeds the top performances of the other by 8.6% with an 87.09 F1 score, which demonstrates the superiority of our method.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!