
arXiv: 2107.11756
Given a video demonstration, can we imitate the action contained in this video? In this paper, we introduce a novel task, dubbed mesh-based action imitation. The goal of this task is to enable an arbitrary target human mesh to perform the same action shown on the video demonstration. To achieve this, a novel Mesh-based Video Action Imitation (M-VAI) method is proposed by us. M-VAI first learns to reconstruct the meshes from the given source image frames, then the initial recovered mesh sequence is fed into mesh2mesh, a mesh sequence smooth module proposed by us, to improve the temporal consistency. Finally, we imitate the actions by transferring the pose from the constructed human body to our target identity mesh. High-quality and detailed human body meshes can be generated by using our M-VAI. Extensive experiments demonstrate the feasibility of our task and the effectiveness of our proposed method.
accpected by ICMR2021
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer Science - Multimedia, Multimedia (cs.MM)
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer Science - Multimedia, Multimedia (cs.MM)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
