<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sterol regulatory element-binding protein (SREBP)-1 is a key transcription factor for the regulation of lipogenic enzyme genes in the liver. Polyunsaturated fatty acids (PUFA) selectively suppress hepatic SREBP-1, but molecular mechanisms remain largely unknown. To gain insight into this regulation, we established in vivo reporter assays to assess the activities of Srebf1c transcription and proteolytic processing. Using these in vivo reporter assays, we showed that the primary mechanism for PUFA suppression of SREBP-1 is at the proteolytic processing level and that this suppression in turn decreases the mRNA transcription through lowering SREBP-1 binding to the SREBP-binding element on the promoter ("autoloop regulatory circuit"), although liver X receptor, an activator for Srebf1c transcription, is not involved in this regulation by PUFA. The mechanisms for PUFA suppression of SREBP-1 confirm that the autoloop regulation for transcription is crucial for the nutritional regulation of triglyceride synthesis.
Cell Nucleus, Male, Mice, Inbred ICR, Orphan Nuclear Receptors, Cell Line, Mice, Gene Expression Regulation, Liver, Fatty Acids, Unsaturated, Animals, Humans, Promoter Regions, Genetic, Sterol Regulatory Element Binding Protein 1, Triglycerides, Liver X Receptors, Protein Binding
Cell Nucleus, Male, Mice, Inbred ICR, Orphan Nuclear Receptors, Cell Line, Mice, Gene Expression Regulation, Liver, Fatty Acids, Unsaturated, Animals, Humans, Promoter Regions, Genetic, Sterol Regulatory Element Binding Protein 1, Triglycerides, Liver X Receptors, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 124 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |