
pmid: 16310286
Neuropeptides are important messenger molecules in invertebrates, serving as neuromodulators in the nervous system and as regulatory hormones released into the circulation. Understanding the function of neuropeptides will require the integration of genetic, biochemical, physiological and behavioral information. The advent of DNA microarrays and bioinformatic databases provides a wealth of data describing the expression profiles of thousands of genes during biological processes. One such array catalogs the developmental patterns of gene expression during the metamorphic transformation of the Drosophila midgut. We have mined the data from this experiment to explore changes of expression in genes coding for known neuropeptides, peptide hormones, and their receptors during the metamorphosis of the midgut. We found small but significant changes in the expression of the peptides diuretic hormone, FGLa-type allatostatins, myoinhibiting peptide, ecdysis-triggering hormone, drosokinin and the burs subunit of bursicon, as well as the receptors DAR-2, NPFR1, ALCR-2, Lkr and DH-R. Just as advances have been made in understanding the molecular basis of invertebrate neuropeptide action by analysis of genome projects, data mining of gene expression databases can help to integrate molecular, biochemical and physiological knowledge of biological processes.
Receptors, Neuropeptide, Neuropeptides, Metamorphosis, Biological, Computational Biology, Gene Expression Regulation, Developmental, Receptors, G-Protein-Coupled, Drosophila melanogaster, Animals, Drosophila Proteins, Digestive System, Oligonucleotide Array Sequence Analysis
Receptors, Neuropeptide, Neuropeptides, Metamorphosis, Biological, Computational Biology, Gene Expression Regulation, Developmental, Receptors, G-Protein-Coupled, Drosophila melanogaster, Animals, Drosophila Proteins, Digestive System, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
