<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 11279828
At the onset of metamorphosis in Drosophila melanogaster, the steroid hormone 20-OH ecdysone induces a small number of early and early-late puffs in the polytene chromosomes of the third-instar larval salivary gland whose activity is required for regulating the activity of a larger set of late puffs. Most of the corresponding early and early-late genes have been found to encode transcription factors that regulate a much larger set of late genes. In contrast, we describe here the identification of an ecdysone-regulated gene in the 62E early-late puff, denoted D-spinophilin, that encodes a protein similar to the mammalian protein spinophilin/neurabin II. The D-spinophilin protein is predicted to contain a highly conserved PP1-binding domain and adjacent PDZ domain, as well as a coiled-coil domain and SAM domain, and belongs to a family of related proteins from diverse organisms. Transcription of D-spinophilin is correlated with 62E puff activity during the early stages of metamorphosis and is ecdysone-dependent, making this the first member of this gene family shown to be regulated by a steroid hormone. Examination of the dynamic patterns of D-spinophilin expression during the early stages of metamorphosis are consistent with a role in central nervous system metamorphosis as well as a more general role in other tissues. As D-spinophilin appears to be the only member of this gene family in Drosophila, its study provides an excellent opportunity to elucidate the role of an important adaptor protein in a genetic model organism.
Ecdysone, DNA, Complementary, Models, Genetic, Microfilament Proteins, Molecular Sequence Data, Metamorphosis, Biological, Nerve Tissue Proteins, Blotting, Northern, Chromosomes, Blotting, Southern, Contig Mapping, Ecdysterone, Larva, Multigene Family, Phosphoprotein Phosphatases, Animals, Drosophila, Amino Acid Sequence, In Situ Hybridization, Protein Binding
Ecdysone, DNA, Complementary, Models, Genetic, Microfilament Proteins, Molecular Sequence Data, Metamorphosis, Biological, Nerve Tissue Proteins, Blotting, Northern, Chromosomes, Blotting, Southern, Contig Mapping, Ecdysterone, Larva, Multigene Family, Phosphoprotein Phosphatases, Animals, Drosophila, Amino Acid Sequence, In Situ Hybridization, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |