Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancer-Mediated Control of Macrophage-Specific Arginase I Expression

Authors: Robert Rutschman; Alessandra B. Pernis; Stephanie S. Watowich; Roland Lang; Peter J. Murray; Anne Laure Pauleau;

Enhancer-Mediated Control of Macrophage-Specific Arginase I Expression

Abstract

AbstractArginase I expression in the liver must remain constant throughout life to eliminate excess nitrogen via the urea cycle. In contrast, arginase I expression in macrophages is silent until signals from Th2 cytokines such as IL-4 and IL-13 are received and the mRNA is then induced four to five orders of magnitude. Arginase I is hypothesized to play a regulatory and potentially pathogenic role in diseases such as asthma, parasitic, bacterial, and worm infections by modulating NO levels and promoting fibrosis. We show that Th2-inducible arginase I expression in mouse macrophages is controlled by an enhancer that lies −3 kb from the basal promoter. PU.1, IL-4-induced STAT6, and C/EBPβ assemble at the enhancer and await the effect of another STAT6-regulated protein(s) that must be synthesized de novo. Identification of a powerful extrahepatic regulatory enhancer for arginase I provides potential to manipulate arginase I activity in immune cells while sparing liver urea cycle function.

Keywords

Arginase, Macrophages, Cell Line, Mice, Enhancer Elements, Genetic, Th2 Cells, Enzyme Induction, Trans-Activators, Animals, Cytokines, Promoter Regions, Genetic, STAT6 Transcription Factor, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    214
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
214
Top 1%
Top 1%
Top 10%
bronze