Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Grid Comp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Grid Computing
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement of Cloud-native applications with Autonomic Features

Authors: Joanna Kosinska; Krzysztof Zielinski;

Enhancement of Cloud-native applications with Autonomic Features

Abstract

AbstractThe Autonomic Computing paradigm reduces complexity in installing, configuring, optimizing, and maintaining heterogeneous systems. Despite first discussing it a long ago, it is still a top research challenge, especially in the context of other technologies. It is necessary to provide autonomic features to the Cloud-native execution environment to meet the rapidly changing demands without human support and continuous improvement of their capabilities. The present work attempts to answer how to explore autonomic features in Cloud-native environments. As a solution, we propose using the AMoCNA framework. It is rooted in Autonomic Computing. The success factors for the AMoCNA implementation are its execution controllers. They drive the management actions proceeding in a Cloud-native execution environment. A similar concept already exists in Kubernetes, so we compare both execution mechanisms. This research presents guidelines for including autonomic features in Cloud-native environments. The integration of Cloud-native Applications with AMoCNA leads to facilitating autonomic management. To show the potential of our concept, we evaluated it. The developed executor performs cluster autoscaling and ensures autonomic management in the infrastructure layer. The experiment also proved the importance of observations. The knowledge gained in this process is a good authority of information about past and current state of Cloud-native Applications. Combining this knowledge with defined executors provides an effective means of achieving the autonomic nature of Cloud-native applications.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%