<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1242/jcs.01154
pmid: 15161941
The endoplasmic reticulum (ER) quality-control machinery maintains the fidelity of the maturation process by sorting aberrant proteins for ER-associated protein degradation (ERAD), a process requiring retrotranslocation from the ER lumen to the cytosol and degradation by the proteasome. Here, we assessed the role of N-linked glycans in ERAD by monitoring the degradation of wild-type (Tyr) and albino mutant (Tyr(C85S)) tyrosinase. Initially, mutant tyrosinase was established as a genuine ERAD substrate using intact melanocyte and semi-permeabilized cell systems. Inhibiting mannose trimming or accumulating Tyr(C85S) in a monoglucosylated form led to its stabilization, supporting a role for lectin chaperones in ER retention and proteasomal degradation. In contrast, ablating the lectin chaperone interactions by preventing glucose trimming caused a rapid disappearance of tyrosinase, initially due to the formation of protein aggregates, which were subsequently degraded by the proteasome. The co-localization of aggregated tyrosinase with protein disulfide isomerase and BiP, but not calnexin, supports an ER organization, which aids in protein maturation and degradation. Based on these studies, we propose a model of tyrosinase degradation in which interactions between N-linked glycans and lectin chaperones help to minimize tyrosinase aggregation and also target non-native substrates for retro-translocation and subsequent degradation.
570, Proteasome Endopeptidase Complex, Calnexin, Monophenol Monooxygenase, Protein Disulfide-Isomerases, Endoplasmic Reticulum, Mice, Protein Transport, Adenosine Triphosphate, Glucose, Mutation, Animals, Carbohydrate Metabolism, Melanocytes, Endoplasmic Reticulum Chaperone BiP, Mannose, Cells, Cultured, Heat-Shock Proteins, Molecular Chaperones
570, Proteasome Endopeptidase Complex, Calnexin, Monophenol Monooxygenase, Protein Disulfide-Isomerases, Endoplasmic Reticulum, Mice, Protein Transport, Adenosine Triphosphate, Glucose, Mutation, Animals, Carbohydrate Metabolism, Melanocytes, Endoplasmic Reticulum Chaperone BiP, Mannose, Cells, Cultured, Heat-Shock Proteins, Molecular Chaperones
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |