
doi: 10.1364/oe.464116
pmid: 36242342
Linear optical sampling (LOS) is one of the most promising techniques for optical modulation analyzers. The LOS system generally adopts a mode-locked fiber laser (MFL) to generate an ultra-stable optical pulse to realize under-sampling for signal under test (SUT). However, it is challenging for MFL to produce a high-repetition-frequency pulse, making more measurement errors of conventional LOS technology, especially for high-speed signals. This paper proposes a dual-pulse mixing (DPM) based LOS system to increase the repetition frequency using fiber delay lines with the multiplied optical pulse. We propose the pulse location and peak extraction algorithms to compensate the time bias and amplitude bias in the DPM-based LOS system, which significantly improves the measurement speed and range. The experiment results show that the DPM-based LOS system can increase the number of sampling points twice compared with the conventional LOS within the same sampling time window. Furthermore, the proposed DPM-based LOS system can achieve less error vector magnitude with a reduction of 9.1% compared with the conventional LOS. Hence, the proposed DPM-based LOS system has great potential for high-speed signal processing.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
