Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Pharmacology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selectivity of diadenosine polyphosphates for rat P2X receptor subunits

Authors: S S, Wildman; S G, Brown; B F, King; G, Burnstock;

Selectivity of diadenosine polyphosphates for rat P2X receptor subunits

Abstract

The pharmacological activity of diadenosine polyphosphates was investigated at three recombinant P2X receptors (rat P2X1, rat P2X3, rat P2X4) expressed in Xenopus oocytes and studied under voltage-clamp conditions. For the rat P2X1 receptor, only P1,P6-diadenosine hexaphosphate (Ap6A) was a full agonist yet 2-3 folds less potent than ATP. At rat P2X3, P1,p4-diadenosine tetraphosphate (Ap4A), P1,P5-diadenosine pentaphosphate (Ap5A) and Ap6A were full agonists and more potent than ATP. Ap4A alone was equipotent with ATP at rat P2X4, but only as a partial agonist. Compared to known data for rat P2X2 and human P2X1 receptors, our findings contrast with rat P2X2 where only Ap4A is a full agonist although four folds less potent than ATP. At rat and human orthologues of P2X1, Ap5A was a partial agonist with similar potency. These data provide a useful basis for selective agonists of P2X receptor subunits.

Related Organizations
Keywords

Purinergic P2 Receptor Agonists, Dose-Response Relationship, Drug, Adenine Nucleotides, Receptors, Purinergic P2, Xenopus, Binding, Competitive, Membrane Potentials, Rats, Adenosine Triphosphate, Receptors, Purinergic P2X, Oocytes, Animals, RNA, Messenger, Receptors, Purinergic P2X4, Dinucleoside Phosphates, Receptors, Purinergic P2X3

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!