Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Dental Materialsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Dental Materials
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective

Authors: Marco C, Bottino; Vinoy, Thomas; Gudrun, Schmidt; Yogesh K, Vohra; Tien-Min Gabriel, Chu; Michael J, Kowolik; Gregg M, Janowski;

Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective

Abstract

Periodontitis is a major chronic inflammatory disorder that can lead to the destruction of the periodontal tissues and, ultimately, tooth loss. To date, flap debridement and/or flap curettage and periodontal regenerative therapy with membranes and bone grafting materials have been employed with distinct levels of clinical success. Current resorbable and non-resorbable membranes act as a physical barrier to avoid connective and epithelial tissue down-growth into the defect, favoring the regeneration of periodontal tissues. These conventional membranes possess many structural, mechanical, and bio-functional limitations and the "ideal" membrane for use in periodontal regenerative therapy has yet to be developed. Based on a graded-biomaterials approach, we have hypothesized that the next-generation of guided tissue and guided bone regeneration (GTR/GBR) membranes for periodontal tissue engineering will be a biologically active, spatially designed and functionally graded nanofibrous biomaterial that closely mimics the native extra-cellular matrix (ECM).This review is presented in three major parts, including (1) a brief overview of the periodontium and its pathological conditions, (2) currently employed therapeutics used to regenerate the distinct periodontal tissues, and (3) a review of commercially available GTR/GBR membranes as well as the recent advances on the processing and characterization of GTR/GBR membranes from a materials perspective.Studies of spatially designed and functionally graded membranes (FGM) and in vitro antibacterial/cell-related research are addressed. Finally, as a future outlook, the use of hydrogels in combination with scaffold materials is highlighted as a promising approach for periodontal tissue engineering.

Keywords

Periodontium, Bone Regeneration, Tissue Engineering, Tissue Scaffolds, Hydrogels, Membranes, Artificial, Nanostructures, Guided Tissue Regeneration, Periodontal, Humans, Periodontitis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    658
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
658
Top 0.1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!