
This paper assesses the viscosity of 10W40 engine oil containing hybrid nanomaterial at different temperatures using artificial neural network (ANN). The volumetric combination of hybrid nanomaterial is 90% silica (SiO2) and 10% multi-walled carbon nanotubes (MWCNTs). Solid volume fraction, temperatures and shear rate were considered as input variables for ANN, and relative viscosity was output parameter. In order to predict viscosity data of SiO2-MWCNTs (90:10%)/10W40, a comparison between the experimental viscosity and that obtained from previous theoretical models was made. This comparison showed that none of the previous theoretical models were able to estimate the viscosity data. Therefore, a neural network was designed to predict the relative viscosity of hybrid nanolubricant. Artificial neural network function was utilized for viscosity data approximation with excellent precision as R2 value was 0.9948.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 96 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
