
Globalization in the semiconductor industry enables fabless design houses to reduce their costs, save time, and make use of newer technologies. However, the offshoring of Integrated Circuit (IC) fabrication has negative sides, including threats such as Hardware Trojans (HTs) - a type of malicious logic that is not trivial to detect. One aspect of IC design that is not affected by globalization is the need for thorough verification. Verification engineers devise complex assets to make sure designs are bug-free, including assertions. This knowledge is typically not reused once verification is over. The premise of this paper is that verification assets that already exist can be turned into effective security checkers for HT detection. For this purpose, we show how assertions can be used as online monitors. To this end, we propose a security metric and an assertion selection flow that leverages Cadence JasperGold Security Path Verification (SPV). The experimental results show that our approach scales for industry-size circuits by analyzing more than 100 assertions for different Intellectual Properties (IPs) of the OpenTitan System-on-Chip (SoC). Moreover, our detection solution is pragmatic since it does not rely on the HT activation mechanism.
6 pages, 6 figures
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
