Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Parallel Programming
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2007
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallel Algorithms Development for Programmable Devices with Application from Cryptography

Parallel algorithms development for programmable devices with application from cryptography
Authors: Issam W. Damaj;

Parallel Algorithms Development for Programmable Devices with Application from Cryptography

Abstract

Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), have been witnessing a considerable increase in density. State-of-the-art FPGAs are complex hybrid devices that contain up to several millions of gates. Recently, research effort has been going into higher-level parallelization and hardware synthesis methodologies that can exploit such a programmable technology. In this paper, we explore the effectiveness of one such formal methodology in the design of parallel versions of the Serpent cryptographic algorithm. The suggested methodology adopts a functional programming notation for specifying algorithms and for reasoning about them. The specifications are realized through the use of a combination of function decomposition strategies, data refinement techniques, and off-the-shelf refinements based upon higher-order functions. The refinements are inspired by the operators of Communicating Sequential Processes (CSP) and map easily to programs in Handel-C (a hardware description language). In the presented research, we obtain several parallel Serpent implementations with different performance characteristics. The developed designs are tested under Celoxica's RC-1000 reconfigurable computer with its 2 million gates Virtex-E FPGA. Performance analysis and evaluation of these implementations are included.

47 Pages, 16 Figures, 4 Tables. arXiv admin note: text overlap with arXiv:1904.03756

Related Organizations
Keywords

Computer system organization, B.4.4, FOS: Computer and information sciences, B.5.2, D.1.3, Computer Science - Cryptography and Security, Data encryption (aspects in computer science), B.6.3, Parallel algorithms, formal models, B.5.1, Computer Science - Distributed, Parallel, and Cluster Computing, gate array, B.4.4; B.5.1; B.5.2; B.6.3; D.1.3, methodologies, Distributed, Parallel, and Cluster Computing (cs.DC), Parallel algorithms in computer science, data encryption, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Green
bronze