Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Explain and Conquer: Personalised Text-based Reviews to Achieve Transparency

Authors: Botana, Iñigo López-Riobóo; Bolón-Canedo, Verónica; Guijarro-Berdiñas, Bertha; Alonso-Betanzos, Amparo;

Explain and Conquer: Personalised Text-based Reviews to Achieve Transparency

Abstract

There are many contexts in which dyadic data are present. Social networks are a well-known example. In these contexts, pairs of elements are linked building a network that reflects interactions. Explaining why these relationships are established is essential to obtain transparency, an increasingly important notion. These explanations are often presented using text, thanks to the spread of the natural language understanding tasks. Our aim is to represent and explain pairs established by any agent (e.g., a recommender system or a paid promotion mechanism), so that text-based personalisation is taken into account. We have focused on the TripAdvisor platform, considering the applicability to other dyadic data contexts. The items are a subset of users and restaurants and the interactions the reviews posted by these users. We propose the PTER (Personalised TExt-based Reviews) model. We predict, from the available reviews for a given restaurant, those that fit to the specific user interactions. PTER leverages the BERT (Bidirectional Encoders Representations from Transformers) transformer-encoder model. We customised a deep neural network following the feature-based approach, presenting a LTR (Learning To Rank) downstream task. We carried out several comparisons of our proposal with a random baseline and other models of the state of the art, following the EXTRA (EXplanaTion RAnking) benchmark. Our method outperforms other collaborative filtering proposals.

Keywords

Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, I.5.1, I.5.2, Computer Science - Artificial Intelligence, I.5.3, I.2.7, I.5.4, Computer Science - Social and Information Networks, Computer Science - Information Retrieval, Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Computation and Language (cs.CL), Information Retrieval (cs.IR), I.2.7; I.5.1; I.5.2; I.5.3; I.5.4

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green