Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2013 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Functional and Structural Analysis of Influenza Virus Neuraminidase N3 Offers Further Insight into the Mechanisms of Oseltamivir Resistance

Authors: Qing, Li; Jianxun, Qi; Yan, Wu; Hiromasa, Kiyota; Kosuke, Tanaka; Yoshitomo, Suhara; Hiroshi, Ohrui; +3 Authors

Functional and Structural Analysis of Influenza Virus Neuraminidase N3 Offers Further Insight into the Mechanisms of Oseltamivir Resistance

Abstract

ABSTRACT The influenza virus neuraminidase H274Y substitution is a highly prevalent amino acid substitution associated with resistance to the most heavily used influenza drug, oseltamivir. Previous structural studies suggest that the group specific 252 residue (Y252 in group 1 and T252 in group 2) might be a key factor underlying H274Y resistance. However, H274Y has only been reported in N1 subtypes, which indicates that there must be additional key residues that determine H274Y resistance. Furthermore, we found that members of NA serotype N3 also possess Y252, raising the key question as to whether or not H274Y resistance may also be possible for some group 2 NAs. Here, we demonstrate that the H274Y substitution results in mild oseltamivir resistance for N3. Comparative structural analysis of N3, N1, and their 274Y variants indicates that the interaction of residue 296 (H in N1 and nonaromatic for other serotypes) with conserved W295 is another important determinant of oseltamivir resistance.

Keywords

Protein Conformation, Mutation, Missense, Neuraminidase, Crystallography, X-Ray, Antiviral Agents, Viral Proteins, Oseltamivir, Amino Acid Substitution, Influenza A virus, Drug Resistance, Viral, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
gold