Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Magnetic Resonance i...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bilateral gradient‐echo spectroscopic imaging with correction of frequency variations for measurement of fatty acid composition in mammary adipose tissue

Authors: Mehran Baboli; Pippa Storey; Terlika Pandit Sood; Justin Fogarty; Melanie Moccaldi; Alana Lewin; Linda Moy; +1 Authors

Bilateral gradient‐echo spectroscopic imaging with correction of frequency variations for measurement of fatty acid composition in mammary adipose tissue

Abstract

PurposeTo develop a simultaneous dual‐slab three‐dimensional gradient‐echo spectroscopic imaging (GSI) technique with frequency drift compensation for rapid (<6 min) bilateral measurement of fatty acid composition (FAC) in mammary adipose tissue.MethodsA bilateral GSI sequence was developed using a simultaneous dual‐slab excitation followed by 128 monopolar echoes. A short train of navigator echoes without phase or partition encoding was included at the beginning of each pulse repetition time period to correct for frequency variation caused by respiration and heating of the cryostat. Voxel‐wise spectral fitting was applied to measure the areas of the lipid spectral peaks to estimate the number of double‐bond (ndb), number of methylene‐interrupted double‐bond (nmidb), and chain length (cl). The proposed method was tested in an oil phantom and 10 postmenopausal women to assess the influence of the frequency variation on FAC estimation.ResultsThe frequency drift observed over 5:27 min during the phantom scan was about 10 Hz. Phase correction based on the navigator reduced the median error of ndb, nmidb, and cl from 9.7%, 17.6%, and 3.2% to 2.1%, 9.5%, and 2.8%, respectively. The in vivo data showed a mean ± standard deviation frequency drift of 17.4 ± 2.5 Hz, with ripples at 0.3 ± 0.1 Hz. Our reconstruction algorithm successfully separated signals from the left and right breasts with negligible residual aliasing. Phase correction reduced the interquartile range within each subject’s adipose tissue of ndb, nmidb, and cl by 18.4 ± 10.6%, 18.5 ± 13.9%, and 18.4 ± 10.6%, respectively.ConclusionThis study shows the feasibility of obtaining bilateral spectroscopic imaging data in the breast and that incorporation of a frequency navigator improves the estimation of FAC.

Related Organizations
Keywords

Adipose Tissue, Phantoms, Imaging, Fatty Acids, Humans, Female, Breast, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!