
The performance of the pattern matching algorithms based on bit-parallelism degrades when the input pattern length exceeds the computer word size. Although several divide-and-conquer methods have been proposed to overcome that limitation, the resulting schemes are not that much efficient and hard to implement. This study introduces a new fast bit-parallel pattern matching algorithm that is capable of searching patterns of any length in a common bit-parallel fashion. The proposed bit-parallel length invariant matcher (BLIM) is compared with the Shift-Or and bit-parallel non-deterministic matching (BNDM) algorithms along with the standard Boyer-Moore and Sunday's quick search, which are known to be the very fast in general. Benchmarks have been conducted on natural language, DNA sequence, and binary alphabet random texts. Besides the length invariant architecture of the algorithm, experimental results indicate that on the average BLIM is 18%, 44%, and 6% faster than BNDM, which is accepted as one of the fastest algorithms of this genre, on natural language, DNA sequence and binary random texts respectively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
